Soft Sensor for NO
نویسندگان
چکیده
In this paper we propose a soft sensor for prediction of NOx emission from the combustion unit of industrial boilers. The soft sensor is based on a dynamical neural network model. A simplified structure of the dynamical neural network model is achieved by grouping the input variables using basic knowledge of the system. Neural network model is trained using real data logs of an industrial boiler. Principal Component Analysis (PCA) is used to reduce number of input variables. Lag space for the model is found by using genetic algorithm to find the best time delayed model. Lag space obtained from the linear model is then used for constriction of the dynamical neural network. The proposed model is validated using different data from the same boiler and its ability to accurately predict NOx emission from the boiler is demonstrated.
منابع مشابه
Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملOptimization of Online induction Sensor for Ferrous Metals Particles Identification in Engine Oil
Engine oil is one of most important parameters in internal combustion engine that plays effective role in component wear. One of the ways to optimize the performance of the IC engines is online monitoring of wear particle in engine oil. There are different ways to identifying these particles, most of which are offline. Nowadays online oil monitoring sensors are quickly developed. In this study ...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملA Fuzzy Based Approach for Rate Control in Wireless Multimedia Sensor Networks
Wireless Multimedia Sensor Networks (WMSNs) undergo congestion when a link (or a node) becomes overpopulated in terms of incoming packets. In WMSNs this happens especially in upstream nodes where all incoming packets meet and directed to the sink node. Congestion in networks, if not handled properly, might lead to congestion collapse which deteriorates the quality of service (QoS). Therefore, i...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملA Modified Leach Algorithm Using Hard and Soft Threshold in Wireless Sensor Network : a Review
Wireless sensor networks have become increasingly popular due to their wide range of application. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. Minimizing the energy consumption of a wireless sensor network application is crucial for effective...
متن کامل